Occurrence of deformed wing virus variants in the stingless Melipona subnitida and honey Apis mellifera bee populations in North Eastern Brazil

de Souza, FS, Kevill, JL, Correia-Oliveira, ME, de Carvalho, CAL and Martin, SJ

http://dx.doi.org/10.1099/jgv.0.001206

<table>
<thead>
<tr>
<th>Title</th>
<th>Occurrence of deformed wing virus variants in the stingless Melipona subnitida and honey Apis mellifera bee populations in North Eastern Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>de Souza, FS, Kevill, JL, Correia-Oliveira, ME, de Carvalho, CAL and Martin, SJ</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/50210/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Occurrence of Deformed wing virus variants in the stingless Melipona subnitida and honey Apis mellifera bee populations in North Eastern Brazil

Flaviane S. de Souza¹², Jessica L. Kevill¹, Carlos A. L. de Carvalho², Stephen J. Martin¹*

¹School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK.

²Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa 710, 44380-000, Cruz das Almas, Bahia, Brazil

*Corresponding author: s.j.martin@salford.ac.uk

Key Words: spill-over, Varroa, viral variants

Abbreviations DWV, Deformed wing virus

Abstract

Deformed wing virus (DWV) is now a global insect pathogen. Brazilian stingless bees are a diverse group often managed in close proximity to honey bees. We investigated the prevalence and load of DWV in 33 stingless bees (Melipona subnitida) and 12 honey bees (Apis mellifera) colonies from NE Brazil. DWV was detected in all colonies with the A and C-variants dominating M. subnitida and A-variant in A. mellifera. Viral loads were 8.83E+07 and 7.19E+07 in M. subnitida and A. mellifera, respectively. On Fernando de Noronha island DWV is low (<1E+03) in honey bees, but we detected high loads (1.6E+08) in nine island M. subnitida colonies, indicating no viral spill-over of DWV has occurred during the past 34 years. Furthermore, the ubiquitous presence of the DWV-C variant in M. subnitida colonies, and rarity in A. mellifera, may suggest limited viral exchange between these two species.
INTRODUCTION

The stingless bees (Apidae: Meliponini) are the most diverse group of eusocial bees, comprising of more than 400 species contained within 60 genera [1]. The majority of species occur in the Neo-tropics with colonies typically containing 200-700 adults and a perennial life-cycle [2]. Many species, particularly the large Melipona species have a long association with humans that harvest their highly prized honey [3], but they are also responsible for pollinating 40-90% of the native flora in some regions of Brazil [4]. Relative to the honey bees (Apis spp), very little is known about the pests and pathogens of stingless bees despite their importance.

Brazil has a long history of managing honey bees (Apis mellifera) originally imported from Europe, but in 1957, 26 colonies of imported African A. m. scutellata escaped quarantine and spread throughout Brazil, hybridising with existing honeybees to form the Africanised honey bee [5]. However, when in 1971 the parasitic Varroa (Varroa destructor) mite arrived in Brazil, the Africanised honey bees were naturally tolerant to the mite, whereas, the European honeybees suffered large scale losses. These losses are caused by a viral pathogen called Deformed Wing Virus (DWV) that is transmitted by the Varroa mite [6].

Although Varroa can only survive on honey bees, [7] showed that raised DWV levels in the honey bee population, initiated by the mite, has resulted in viral spill-over into other species of bees and wasps. This may explain why DWV has been detected in a wide range of non-Apis insects [8-11] and has even been detected in pollen [12]. The impact of DWV on these hosts remains unknown [13], although there is growing concern [11, 14-16].

In Brazil, the Africanised honey bee, Varroa mite and DWV have been present for decades so there have been ample opportunities for cross-species infections to occur, especially since both honey bees and stingless bees are often managed in close proximity, i.e. in nearby apiaries. Therefore, the aim of this study was to evaluate both the prevalence and viral load of the three described DWV master-variants (A, B and C) across a population of stingless bee (Melipona subnitida) and Africanised honey bees from North-Eastern Brazil. The stingless bee M. subnitida is a swarm founding species, brood development takes around 40 days, and workers survive for a few months. This species is endemic to the dryland-shrub forest ‘Caatinga biome’ found in NE Brazil and is the typical stingless bee maintained by beekeepers throughout the region. This Meliponiculture helps towards the conservation of local biodiversity, as well as provide extra income to the beekeepers [3].
RESULTS

Prevalence of DWV

We detected DWV in every *M. subnitida* and *A. mellifera* colony. Negative controls indicated no contamination had occurred in any of the runs. Furthermore, the housekeeping gene indicated all samples contain intact RNA (Fig. 1). The average Ct values indicated more β-actin in the *A. mellifera* samples (19.7Ct ± 1.91 S.D.) relative to the *M. subnitida* samples (23.5Ct ± 0.70 S.D.).

DWV viral loads. The A and C master-variants were detected in the *M. subnitida* population only (Fig. 2). The DWV-A variant was dominant in 78% of the colonies (Fig. 2) with the C-variant dominating the remaining 22%. Whereas, 92 % of honey bee colonies were dominated by the A-variant and only one colony (8%) was dominated by the C-variant. The DWV-B variant was quantifiable in a single *A. mellifera* colony (Table 1) whilst three others tested positive below the quantifiable limit of the qPCR assay but had visible bands when visualised on a gel (Mossoro, Garanhus and Cruz das Almas). The total DWV viral load detected in both species of bee averaged 8.8E+07 and 7.2E+07 in *M. subnitida* and *A. mellifera* respectively. On the remote Fernando de Noronha island, the *M. subnitida* colonies were dominated by the A-variant, and the C-variant was widespread. However, the viral load was an order of magnitude higher on the island (1.6E+08) relative to the mainland (3.6E+07).

DISCUSSION

This study provides the first report of DWV in *Meliponini* stingless bees, since DWV was not detected previously in *Melipona quadrispasciata* and *M. torrida* [17], although t the DWV-A variant was detected in Argentinian stingless bees (*Tetragonisca fiebrigi*). Furthermore, *M. scutellaris* tested negative for six bee-associated viruses including DWV, but did test positive for the honey bee associated acute bee paralysis virus [18]. The high prevalence of DWV in *A. mellifera* was expected since DWV is consistently the most prevalent viral pathogen of European and Africanised honey bees [19].

The dominance of the DWV-A variant found in this study reflects the situation found in honey bees in the USA in 2010 [20]. Although the B-variant is replacing the A-variant in the USA [20] and appears common in Europe [21], it was only detected in any quantity in a single Africanised colony (Fig. 2). This is despite the likely long-term infection of both stingless and honey bees in Brazil. The rarely detected C-variant [20, 22] was present in almost all the *M. subnitida* colonies.
Interestingly on the remote island of Fernando de Noronha where both *M. subnitida* and *A. mellifera* have been maintained in close proximity over the past 34 years, the DWV-A variant dominated all nine colonies with a mean viral load of 1.6E+08. Whereas in the European honey bees on this island have a low (~1E+03) viral load, and diverse range of DWV variants [2]. This provides further evidence that DWV may be a general hymenopteran or insect virus rather than a honey bee pathogen that has spilled over into the pollinator community. Again, the ubiquitous presence of the DWV-C variant in *M. subnitida* colonies, and rarity in *A. mellifera* colonies on the mainland again suggests limited viral exchange between these two species. The chance of spill-over may be reduced due to the low (8E+07) DWV viral loads present in both the stingless and honey bees of NE Brazil, relative to those found in asymptomatic (2.4E+09) and symptomatic (6.9E+11) European honey bees [23]. Whereas, when these high DWV loads are present in honey bees, DWV appears to spill-over into the neighbouring wasps and solitary bees [7]. These low DWV viral loads in Brazil may be attributed to the hygienic habit of stingless bees [24], and Varroa-tolerance in Africanised bees, both which will reduce the viral load in a colony.

METHODS

Samples

Pools of 30 *M. subnitida* workers were collected using a pooter directly at the entrance of 24 colonies from meliponiparies at ten mainland locations across NE Brazil. Samples from Fortaleza and Mossoro were collected in 2016 with all other samples collected in 2013. In addition, pools of ten *M. subnitida* workers from nine colonies located on the remote oceanic island of Fernando de Noronha were collected in 2013 using the same method. These samples are interesting since this population was originally established from 30 colonies brought to the island in 1983 from the mainland states of Ceara and Rio Grande do Norte [25]. In 1984 Kerr also established a small population of European honey bees on Fernando de Noronha that were accidentally infested by the Varroa mite, although the typically high levels of DWV were not present in either the honey bees or Varroa [26].

During the same period pools of 30 healthy adult worker Africanised honey bees where collected from the brood area of 12 colonies from six states across NE Brazil. All samples were collected in absolute ethanol and stored at -20° C before transportation to the UK under license to be analysed.

Detection and quantification of DWV variants

Total RNA was extracted from a pool of 10 heads per colony for both stingless and honey bees. Heads were used as this reduced sample processing and is based on sound scientific
reasoning [27-30]. The heads were ground in liquid Nitrogen into a fine homogeneous powder, a 30mg sub-sample had its RNA extracted using a Qiagen RNeasy mini kit, which was enhanced by using a QIAshredder kit for the M. subnitida samples [31]. Nanodrop (8000 series) quantification was used to standardise the amounts of total RNA to 50 ng/µl using RNase free water, before been stored at -80°C.

In order to quantify the viral load of each DWV Master-variant we used a recently developed method [22]. Briefly, cDNA was synthesised using one-step SensiFAST SYBR No ROX One-step kit (Bioline, London, UK), the reactions contained 1µl RNA at a concentration of 50 ng/µl, 10µl Senifast mix, 0.2µl Reverse transcriptase, 0.4µl RNase inhibitor, 0.75 pmol of each primer (DWV F and R-Type A, B and C [Table 2]) and 7.5µl of H2O. Reactions were run on a Rotor-Gene Q Thermocycler (Qiagen) with an initial reverse transcription stage at 45°C for 10 min and a denaturation step of 95°C for 10 min, followed by 35 cycles of denaturation for 15 s at 95°C, annealing for 15 s at 58°C for primers A and B, and 61.5°C for primer C and extension for 15 s at 72°C. A final dissociation melt curve was performed between 72°C and 90°C, at 0.5°C increments, each with a 90 s hold. The melt curve was used to ensure that a single targeted product was amplified, and that no contamination was present in the reverse transcription negative controls or in the no-template controls. The threshold cycle (Ct) value was determined for each sample using the QIAGEN Rotor—Gene Q Series Analysis software and viral quantification was done by using serial dilutions of the standard DWV RNA, ranging from 1E+02 to 1E+07 copies of DWV per reaction. All samples were run in triplicate and the average taken. Those samples which had a standard deviation of ≥3 Ct were repeated. Furthermore, PCR products were run on a 2% agarose gel stained with 0.001% GelRed to confirm the correct sized band had been amplified. A control housekeeping gene β-actin [23] was also run to ensure no degradation of the samples had occurred, due to large distances these samples were transported both within and between countries. Genome equivalents were calculated per sample using the following equation:

\[
\text{Genome equivalents} = (\text{average copy number}) \times (\text{RNA dilution factor}) \times (\text{elution volume of RNA}) \times (\text{proportion of bee material})
\]

Funding information

F. S. de Souza was funded by Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (Cod. SEG 02.11.01.029.00.00), CNPq (Proc. 400425/2014-9 and 305885/2017-0) and CAPES for the PDSE scholarship (Proc. 88881.132120/2016-01). S. J. Martin and C. A. L. de Carvalho were funded by a CNPq Special Visiting Researcher PVE (400425/2014-9).
Acknowledgement
The authors would like to acknowledge the Brazilian Institute of Environment and Renewable Natural Resources, Chico Mendes Institute for Biodiversity Conservation, DAI/DEFN and ADEFN, for the permission to conduct the survey in the island of Fernando de Noronha. We would like to thank Márcia de Fátima Ribeiro, Candida B. da Silva Lima, Maria Emilene Correia de Oliveira and Victor Hugo P. Dias for the collection of bee samples and the beekeepers, for allowing the sampling of bees from their colonies. Also we would thank Bárbara Lins Caldas de Moraes for support with the map.

Author Contributions
Conceptualization: All authors
Data curation: Flaviane S. de Souza, Jessica L. Kevill,
Formal analysis: Flaviane S. de Souza, Jessica L. Kevill, Stephen J. Martin.
Funding acquisition: Carlos A. L. de Carvalho, Stephen J. Martin.
Investigation: Flaviane S. de Souza, Jessica L. Kevill,
Methodology: Jessica L. Kevill,
Project administration: Carlos A. L. de Carvalho, Stephen J. Martin.
Resources: Carlos A. L. de Carvalho, Stephen J. Martin.
Supervision: Carlos A. L. de Carvalho, Stephen J. Martin.
Validation: Flaviane S. de Souza, Jessica L. Kevill,
Visualization: Flaviane S. de Souza
Writing - original draft: Flaviane S. de Souza
Writing - review & editing: Flaviane S. de Souza, Jessica L. Kevill, Stephen J. Martin.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
There are no ethical issues.
References

Table 1. The mean viral load of each DWV master variant detected in the 21 *Melipona subnitida* and 12 *Apis mellifera* samples collected from across NE Brazil.

<table>
<thead>
<tr>
<th></th>
<th>Melipona subnitida</th>
<th>Apis mellifera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average viral load</td>
<td>Average viral load</td>
</tr>
<tr>
<td>DWV-A</td>
<td>8.10E+07</td>
<td>6.96E+07</td>
</tr>
<tr>
<td>DWV-B</td>
<td>n.d.</td>
<td>2.35E+05</td>
</tr>
<tr>
<td>DWV-C</td>
<td>7.31E+06</td>
<td>2.06E+06</td>
</tr>
<tr>
<td>All</td>
<td>8.83E+07</td>
<td>7.19E+07</td>
</tr>
</tbody>
</table>

Table 2. Primers used in this study were developed by [24].
<table>
<thead>
<tr>
<th>Target</th>
<th>Primer Name</th>
<th>Sequence (5' - 3')</th>
<th>Size of product (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWV Forward</td>
<td>DWVnew-F1</td>
<td>TACTAGTGCTGTTTTCCTTT</td>
<td>299</td>
</tr>
<tr>
<td>DWV Type A</td>
<td>DWVA-R1</td>
<td>CTCATTAACCTGTGTTGTTGAT</td>
<td>155</td>
</tr>
<tr>
<td>DWV Type B</td>
<td>DWVB-R1</td>
<td>CTCATTAACCTGAGTTGTTGTC</td>
<td>155</td>
</tr>
<tr>
<td>DWV Type C</td>
<td>DWVC-R1</td>
<td>ATAAGTTGCGTGGTGAC</td>
<td>152</td>
</tr>
</tbody>
</table>

Fig. 1. Typical gel showing the presence of β-actin in all samples of *Melipona subnitida, Apis mellifera* and positive controls, confirming that the samples contained intact RNA.